Recent Simulation Tune-Ups

Ben jones, MIT



LArG4 Speed Issues

* A current priority for the simulation is to get the
memory usage and time requirements down.

 LArG4 is the slowest part of the simulation chain
for most events. Lots of work has been done to
reduce its memory consumption and time
requirements.

* | made a few changes to increase the efficiency of
geometry handling and improve simulation
performance



Int NearestChannel(double* xyz)

Function :

Given a charge deposit somewhere in space, find the closest wire (called
10,000s of times per job)

Previous implementation Summary :

Scan through all wire objects loaded in geometry and calculate distance from
each. Return the shortest

New implementation Summary :

Calculate the projection in the pitch direction, and given a knowledge of the
wire pitch and first wire position, get the wire number



A couple of implementation details

All variables from geometry are looked up only
on the first call. As many calculations as possible
are performed once only.

As well as accepting the position of the deposit,
the function also now accepts the plane and tpc
ID and finds the nearest channel in that plane

The output is range checked for invalid wire
numbers, which generate an exception.

Full wire number calculation can be performed in
one line of code using all precalculated quantities



ChannelToWire and PlaneWireToChannel

Function :
Convert {wire ID, plane ID, TPC ID} to / from channel ID
Previous implementation Summary :

Scan through all wire objects loaded in geometry and find
the one which matches one labelling specfication. Return
the other

New implementation Summary :

Assume wires are labeled hierarchically (counting up from 0O,
tpcl { planel, plane 2...} tp2{ plane 1, plane 2...} etc.
Calculate coordinates using statically stored boundaries
between each plane



New geometry methods

* For all described so far, we assume uniformly
spaced tpc wires in each plane with heirachical
numbering.

* Might want to relax this in some weird future
experiment so | also left the old brute force

methods in place.

* The new methods are named
Geometry::NearestChannelFast,
Geometry::PlaneWireToChannelFast,
Geometry::ChannelToWireFast



LArVoxelReadout

Function :

Perform charge drift simulation for each charge
deposited in LArG4

Previous implementation Summary :

Calculate charge diffusion, losses etc for each
electron cluster and deposit on nearest wires in each
plane

New implementation Summary :

General streamlining (calculating everything in the
outermost for loop possible, statically store
repeated results, etc) and modify to work with new
geometry lookups



sim::SimChannel

Function :
Keep record of charge clusters drifted to each wire
Previous implementation Summary :

Store a vector of IDE objects recording the charges
accepted for each tick and for each channel

New implementation Summary :

Mostly the same, but all charge passed to wires at
end of job to reduce time spent looking up the right
channel / time bin per cluster, and general code
streamlining



GDML Geometry

Within LArSoft, the geometry object given to LArG4 is
distinct from that used to determine wire geometry for
drift simulation — one comes from a root file and one
from a gdml file (though origin is shared)

It is not necessary for LArG4 to know about the wires
at all — put in switch to allow us to feed LArG4 a wire-
free geometry which greatly reduces overhead

On Brians request, removed option to have both wired
and wire free gdml available in the job. | am not sure
which way | feel about this yet.

Need to add automatic wireless-geometry building to
geometry scripts (is Adam in this meeting?)



Validation

Ran GeometryTest.cxx with new wire lookups
and new geometry specification — works exactly
as before and passes all validations

Ran Brians MC cheater and found a 100% purity
and efficiency of hits produced, given the MC
charge deposits

Cross checked all histograms from FFTHitAna
between old code and new code, and all look
identical (didn’t include them here because |
don’t know what they all mean)

If | have missed something and your simulation is
weird, let me know.




MCCheater Output



ArgoNeuT Geometry

Saima reported a warning message thrown by
NearestChannelFast

Apparently a known bug in ArgoNeuT geometry
due to a gap in the wireplane — old method
ignored the problem and double counted charge
on outer wires.

New method sees absence of wire coverage in
TPC volume and declares an exception

Is this warning message useful? Should drift to no
wire region be allowed or not?



Performance enhancement:

* Running prod_single.fcl for uboone
(note: not prod_single _uboone.fcl)

Old Code:

TimeReport> Time report Rest of modules take a fairly
complete in 1422.83 seconds
Time Summary: constant 8 seconds
Min: 113.322
Max: 296.957
Avg: 142.283 Old LArG4 speed : 134 s / event
(approx 105s/event after first)
New Code:
New LArG4 speed: 16 s / event

TimeReport> Time report

complete in 247.019 seconds
Time Summary:

Min: 18.3711

Max: 30.4003

Avg: 24.7019

(approx 11s/event after first)



